介观活体显微

实验室致力于深入理解生理和病理现象,这依赖于对不透明组织进行非侵入式三维成像的能力。这种方法覆盖了各种空间和时间尺度,揭示了器官层面细胞间相互作用的复杂网络。尽管这种方法具有巨大潜力,但它面临着如大数据处理需求、光学异质性、表面不平整和光毒性等重大挑战,需要在体积、分辨率、速度、样本活力和系统复杂性之间找到平衡。

为克服这些挑战,我们将计算光学、生物工程和机器学习的最新进展相结合,开发了一系列创新工具,以提升活体成像的能力。特别是,我们的RUSH技术实现了超过一厘米的视场与单细胞分辨率。RUSH3D进一步将此能力扩展到三维空间,而RUSH-mini则将这项技术集成到一个重量不到三克的紧凑设备中,适用于自由移动动物的研究。

这些创新在神经科学、免疫学和病理学等领域得到了广泛应用,使我们的研究成果成为从单个细胞到复杂器官结构的介观生物系统检查的强大工具。


代表性论文

  • A miniaturized mesoscope for the large-scale single-neuron-resolved imaging of neuronal activity in freely behaving mice, Nature Biomedical Engineering 2024

  • Long-term intravital subcellular imaging with confocal scanning light-field microscopy, Nature Biotechnology 2024

  • A Systematically Optimized Miniaturized Mesoscope (SOMM) for large-scale calcium imaging in freely moving mice, Nature Biomedical Engineering 2024

  • Multifocal fluorescence video-rate imaging of centimetre-wide arbitrarily shaped brain surfaces at micrometric resolution, Nature Biomedical Engineering 2024

  • Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue, Cell 2023

  • Virtual-scanning light-field microscopy for robust snapshot high-resolution volumetric imaging, Nature Methods 2017

  • Multi-focus light-field microscopy for high-speed large-volume imaging, PhotoniX 2022

  • Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale, Cell 2021

  • Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution, Nature Photonics 2019