English
首页
科学研究
研究课题
RUSH
出版物
论文专著
软件著作权
成果奖励
团队成员
带头人
全部成员
讲座
联系方式
课题研究
首页
>
课题研究
>
小鼠全脑图谱
小鼠全脑图谱
## Whole Brain Cell Atlas of Mice ### Introduction Recent advances in large-scale single-cell RNA-seq enable fine-grained characterization of phenotypically distinct cellular states in heterogeneous tissues. We present scScope, a scalable deep-learning-based approach that can accurately and rapidly identify cell-type composition from millions of noisy single-cell gene-expression profiles. ### Highlights  ####Scalable analysis of cell-type composition - Recursive self-coding neural network - Large-scale fast clustering based on down-sampling, K-means clustering and graph clustering - Rapid analysis of mega-scale intracellular structures > Deng, Y., Bao, F., Dai, Q., Wu, L. F., & Altschuler, S. J. (2019). [Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning](https://www.nature.com/articles/s41592-019-0353-7). Nature methods, 1.